↳ Prolog
↳ PrologToPiTRSProof
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
MERGE_IN(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U31(X, Xs, Y, Ys, Zs, less_in(Y, X))
MERGE_IN(.(X, Xs), .(Y, Ys), .(Y, Zs)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U41(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
U31(X, Xs, Y, Ys, Zs, less_out(Y, X)) → MERGE_IN(.(X, Xs), Ys, Zs)
MERGE_IN(.(X, Xs), .(Y, Ys), .(X, Zs)) → U11(X, Xs, Y, Ys, Zs, leq_in(X, Y))
MERGE_IN(.(X, Xs), .(Y, Ys), .(X, Zs)) → LEQ_IN(X, Y)
LEQ_IN(s(X), s(Y)) → U61(X, Y, leq_in(X, Y))
LEQ_IN(s(X), s(Y)) → LEQ_IN(X, Y)
U11(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U21(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
U11(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → MERGE_IN(Xs, .(Y, Ys), Zs)
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
MERGE_IN(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U31(X, Xs, Y, Ys, Zs, less_in(Y, X))
MERGE_IN(.(X, Xs), .(Y, Ys), .(Y, Zs)) → LESS_IN(Y, X)
LESS_IN(s(X), s(Y)) → U51(X, Y, less_in(X, Y))
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
U31(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U41(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
U31(X, Xs, Y, Ys, Zs, less_out(Y, X)) → MERGE_IN(.(X, Xs), Ys, Zs)
MERGE_IN(.(X, Xs), .(Y, Ys), .(X, Zs)) → U11(X, Xs, Y, Ys, Zs, leq_in(X, Y))
MERGE_IN(.(X, Xs), .(Y, Ys), .(X, Zs)) → LEQ_IN(X, Y)
LEQ_IN(s(X), s(Y)) → U61(X, Y, leq_in(X, Y))
LEQ_IN(s(X), s(Y)) → LEQ_IN(X, Y)
U11(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U21(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
U11(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → MERGE_IN(Xs, .(Y, Ys), Zs)
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
LEQ_IN(s(X), s(Y)) → LEQ_IN(X, Y)
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
LEQ_IN(s(X), s(Y)) → LEQ_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
LEQ_IN(s(X), s(Y)) → LEQ_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
LESS_IN(s(X), s(Y)) → LESS_IN(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
MERGE_IN(.(X, Xs), .(Y, Ys), .(X, Zs)) → U11(X, Xs, Y, Ys, Zs, leq_in(X, Y))
U31(X, Xs, Y, Ys, Zs, less_out(Y, X)) → MERGE_IN(.(X, Xs), Ys, Zs)
U11(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → MERGE_IN(Xs, .(Y, Ys), Zs)
MERGE_IN(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U31(X, Xs, Y, Ys, Zs, less_in(Y, X))
merge_in(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U3(X, Xs, Y, Ys, Zs, less_in(Y, X))
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
U3(X, Xs, Y, Ys, Zs, less_out(Y, X)) → U4(X, Xs, Y, Ys, Zs, merge_in(.(X, Xs), Ys, Zs))
merge_in(.(X, Xs), .(Y, Ys), .(X, Zs)) → U1(X, Xs, Y, Ys, Zs, leq_in(X, Y))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U1(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → U2(X, Xs, Y, Ys, Zs, merge_in(Xs, .(Y, Ys), Zs))
merge_in(X, [], X) → merge_out(X, [], X)
merge_in([], X, X) → merge_out([], X, X)
U2(X, Xs, Y, Ys, Zs, merge_out(Xs, .(Y, Ys), Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(X, Zs))
U4(X, Xs, Y, Ys, Zs, merge_out(.(X, Xs), Ys, Zs)) → merge_out(.(X, Xs), .(Y, Ys), .(Y, Zs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
MERGE_IN(.(X, Xs), .(Y, Ys), .(X, Zs)) → U11(X, Xs, Y, Ys, Zs, leq_in(X, Y))
U31(X, Xs, Y, Ys, Zs, less_out(Y, X)) → MERGE_IN(.(X, Xs), Ys, Zs)
U11(X, Xs, Y, Ys, Zs, leq_out(X, Y)) → MERGE_IN(Xs, .(Y, Ys), Zs)
MERGE_IN(.(X, Xs), .(Y, Ys), .(Y, Zs)) → U31(X, Xs, Y, Ys, Zs, less_in(Y, X))
leq_in(s(X), s(Y)) → U6(X, Y, leq_in(X, Y))
leq_in(0, s(0)) → leq_out(0, s(0))
leq_in(0, 0) → leq_out(0, 0)
less_in(s(X), s(Y)) → U5(X, Y, less_in(X, Y))
less_in(0, s(0)) → less_out(0, s(0))
U6(X, Y, leq_out(X, Y)) → leq_out(s(X), s(Y))
U5(X, Y, less_out(X, Y)) → less_out(s(X), s(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
MERGE_IN(.(X, Xs), .(Y, Ys)) → U31(X, Xs, Y, Ys, less_in(Y, X))
MERGE_IN(.(X, Xs), .(Y, Ys)) → U11(X, Xs, Y, Ys, leq_in(X, Y))
U31(X, Xs, Y, Ys, less_out) → MERGE_IN(.(X, Xs), Ys)
U11(X, Xs, Y, Ys, leq_out) → MERGE_IN(Xs, .(Y, Ys))
leq_in(s(X), s(Y)) → U6(leq_in(X, Y))
leq_in(0, s(0)) → leq_out
leq_in(0, 0) → leq_out
less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(0)) → less_out
U6(leq_out) → leq_out
U5(less_out) → less_out
leq_in(x0, x1)
less_in(x0, x1)
U6(x0)
U5(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U11(X, Xs, Y, Ys, leq_out) → MERGE_IN(Xs, .(Y, Ys))
Used ordering: Polynomial interpretation [25]:
MERGE_IN(.(X, Xs), .(Y, Ys)) → U31(X, Xs, Y, Ys, less_in(Y, X))
MERGE_IN(.(X, Xs), .(Y, Ys)) → U11(X, Xs, Y, Ys, leq_in(X, Y))
U31(X, Xs, Y, Ys, less_out) → MERGE_IN(.(X, Xs), Ys)
POL(.(x1, x2)) = 1 + x2
POL(0) = 0
POL(MERGE_IN(x1, x2)) = x1
POL(U11(x1, x2, x3, x4, x5)) = 1 + x2
POL(U31(x1, x2, x3, x4, x5)) = 1 + x2
POL(U5(x1)) = 0
POL(U6(x1)) = 0
POL(leq_in(x1, x2)) = 0
POL(leq_out) = 0
POL(less_in(x1, x2)) = 0
POL(less_out) = 0
POL(s(x1)) = 0
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
MERGE_IN(.(X, Xs), .(Y, Ys)) → U11(X, Xs, Y, Ys, leq_in(X, Y))
MERGE_IN(.(X, Xs), .(Y, Ys)) → U31(X, Xs, Y, Ys, less_in(Y, X))
U31(X, Xs, Y, Ys, less_out) → MERGE_IN(.(X, Xs), Ys)
leq_in(s(X), s(Y)) → U6(leq_in(X, Y))
leq_in(0, s(0)) → leq_out
leq_in(0, 0) → leq_out
less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(0)) → less_out
U6(leq_out) → leq_out
U5(less_out) → less_out
leq_in(x0, x1)
less_in(x0, x1)
U6(x0)
U5(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
MERGE_IN(.(X, Xs), .(Y, Ys)) → U31(X, Xs, Y, Ys, less_in(Y, X))
U31(X, Xs, Y, Ys, less_out) → MERGE_IN(.(X, Xs), Ys)
leq_in(s(X), s(Y)) → U6(leq_in(X, Y))
leq_in(0, s(0)) → leq_out
leq_in(0, 0) → leq_out
less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(0)) → less_out
U6(leq_out) → leq_out
U5(less_out) → less_out
leq_in(x0, x1)
less_in(x0, x1)
U6(x0)
U5(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
MERGE_IN(.(X, Xs), .(Y, Ys)) → U31(X, Xs, Y, Ys, less_in(Y, X))
U31(X, Xs, Y, Ys, less_out) → MERGE_IN(.(X, Xs), Ys)
less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(0)) → less_out
U5(less_out) → less_out
leq_in(x0, x1)
less_in(x0, x1)
U6(x0)
U5(x0)
leq_in(x0, x1)
U6(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
MERGE_IN(.(X, Xs), .(Y, Ys)) → U31(X, Xs, Y, Ys, less_in(Y, X))
U31(X, Xs, Y, Ys, less_out) → MERGE_IN(.(X, Xs), Ys)
less_in(s(X), s(Y)) → U5(less_in(X, Y))
less_in(0, s(0)) → less_out
U5(less_out) → less_out
less_in(x0, x1)
U5(x0)
From the DPs we obtained the following set of size-change graphs: